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§1 Introduction

Imagine that you are on trial for a crime you did not commit, and the prosecutor manages
to convince the jury of your guilt using an argument that is backed by what seems like
solid mathematical reasoning. How can this be, when you’re actually innocent? Or,
consider the friendship paradox, which states that on average, your friends have more
friends than you do. Is this even true - and if it is, how can such a claim be proven?
Finally, think about why people gamble, and what makes it so addicting. Why is such
an activity probably not the best idea when trying to stay out of debt? In this paper,
we will introduce the basic components of probability theory, the immensely powerful
concept that not only explains why the above phenomena exist but also plays a role in
nearly every decision we make in our daily lives.

§2 The Basics of Probability

To begin, we will first define the essential terms and three basic axioms of probability.

Definitions

• The set of all possible outcomes of an experiment is known as the sample
space, denoted by S.

• An event E is any subset of outcomes of the sample space S. If the outcome
of the experiment is contained in E, we say that E has occurred.

• The probability of E occurring is then represented by:

P (E) =
outcomes contained in E

total possible outcomes (S)

• Given the two events E and F , we define the union of E and F (denoted
by E ∪ F ) to be the set of outcomes contained in either E or F or both.
Similarly, we define the intersection of E and F (denoted by E ∩ F or just
EF ) to be the set of outcomes that are in both E and F .

• For any event E, we define all the outcomes in the sample space S that are
not contained in E as the complement of E, denoted by EC . It follows that
EC will only occur if and only if E does not occur, and we have E+EC = S.
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With these foundations of probability established, we will now focus our attention on
the properties of P (E), the quantity that lies at the heart of essentially every probability
question. For each event E in our experimental sample space S, we can assume that
P (E) is defined and satisfies the following three axioms.

Axioms

1. 0 ≤ P (E) ≤ 1

2. P (S) = 1

3. For any sequence of mutually exclusive events E1, E2, E3, ... (that is, EiEj =
∅ when i ̸= j),

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P (Ei)

Intuitively, these axioms come naturally. Axiom 1 simply states that the probability of
any event cannot be less than 0 and more than 1, which makes sense because these mark
the two extremes (0 meaning there is no chance of it occurring, 1 meaning it will always
occur). Axiom 2 states that the probability of the outcome being in the sample space
S is 1, which again follows because S contains all possible outcomes. Finally, axiom 3
states that for a sequence of mutually exclusive events, the probability of at least one of
them occurring is just the sum of their respective probabilities. This holds true because
none of the events overlap, so they do not affect each other when summing to find the
total probability. (See section 4 for more.)

§3 The Birthday Problem

Imagine that it’s a bright, sunny weekend in June and school has just ended. You’re
enjoying a few chapters of the crime novel everyone’s been raving about lately when your
best friend calls, inviting you to a picnic party at the local park. Though you’re reluctant
to put down your crime novel (and at the part where the main couple is on trial, too!), you
figure it might be nice to catch up with friends and also maybe snag some nice sandwiches
while you’re at it. So you agree, and half an hour later you find yourself at the party,
happily munching on an egg salad sandwich as you talk with some new people from school.

When one girl introduces herself, you realize that you share the same birthday as
her. You look around, noting that while there are a decent amount of people, the
party certainly isn’t enormous by any means. Surprised, you wonder, Wow, what are
the chances that I meet someone with the same birthday as me at a random party like this?

It turns out, that when there are at least 23 people at a party, the probability that at
least two of them share a birthday is actually greater than 1/2. Which, considering there
are 365 different possible birthdays, is a surprisingly high chance!

To understand why, let us imagine a party with n people. Let E denote the event that
two people at the party share a birthday. Since P (E) is the same as 1− P (EC), we can
find P (E) by subtracting P (EC), the probability that no two people at the party share
a birthday, from 1.
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Because each person’s birthday can be any one of the 365 days of the year, the total
number of birthday combinations at a party of size n is 365n. Now, person 1 has 365
possible birthdays. In order for no two people to share the same birthday, person 2
cannot have the same birthday as person 1, so there are 364 possible birthdays for person
2 that satisfy our conditions. Similarly, person 3 cannot have the same birthday as person
2 or person 1, so there are 363 possible birthdays for person 3 that work. Continuing
this pattern, we have:

P (EC) =
(365)(364)(363)(362)...(365− n+ 1)

365n

It turns out that when n is 23, this probability is less than 1/2, meaning that when there
are 23 people at a party, the chances that any two of them will share the same birthday
is greater than 50%.

While this might seem surprising at first because 23 seems like such a small number
compared to the 365 possible birthdays, it’s important to note that there are

(
23
2

)
= 253

different pairs of individuals at the party. So even though each of these pairs only has a
365
3652

= 1
365 chance of sharing a birthday, the total probability is much higher because of

how many different pairs we have.

We note that as n gets larger, P (EC) decreases and P (E) increases. Thus, the more
people that are present at the party, the greater the probability is that two people will
share a birthday (intuitively, this makes a lot of sense). When n = 50, the probability
that at least two people share a birthday is approximately 0.970 - that’s almost an 100%
chance - and when n = 100, the probability becomes greater than 3,000,000:1.

In other words, as long as you’re attending some decently-sized parties, the chance
that you or someone you know finds their birthday twin is very high.

§4 Independence and Dependence

Given the two events E and F , we can make statements about the effect of each event
occurring on the probability of the other. In general, the probability of event E occurring
given that F has already occurred is not equal to the unconditional probability of event
E. Intuitively, this makes sense, because knowing one event has already occurred helps
narrow the sample space for the other. However, there are cases where this is not true,
and knowing F has occurred does not in fact affect the probability of event E occurring.
To describe the effect of one event on the probability of another, we use the terms
independence and dependence.

Definition

Two events are said to be independent if P (EF ) = P (E)P (F ),
and dependent if the above equation does not hold.

Example 1 You have 52 playing cards. Let E be the event that the first card you choose
is a spade, and let F be the event that it is an ace. What is the probability that the first
card you choose is an ace of spades?

Solution Since you have 52 cards and there is only 1 ace of spades, the probability that
you will choose an ace of spades on your first draw is 1

52 . We note that the probabilities
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of E and F respectively are 13
52 and 4

52 . Thus, we see that

P (E)P (F ) =
13

52
· 4

52
=

52

522
=

1

52
,

and since P (EF ), the probability that the first card you choose is both an ace and a
spade, is equal to 1

52 , the equation P (EF ) = P (E)P (F ) holds true. Therefore, E and F
are independent events.

Now let’s consider a problem where things get a bit more complex:

Example 2 Suppose you roll 2 fair dice. Let E1 be the event that the sum of the two
dice is 5, and let F be the event that the first die rolls a 2. Are these events independent?
What about if the desired sum is 7 instead of 5?

Solution We have 6 · 6 = 36 total possible outcomes. In order for our dice to sum to
5, we must roll one of the following four outcomes: {(1, 4), (2, 3), (3, 2), (4, 1)}. Thus,
P (E1) =

4
36 . Similarly, since P (F ) is just the probability that our first die is a 2, P (F ) = 1

6 .
This gives us

P (E1)P (F ) =
4

36
· 1
6
=

1

54
.

However, we note that P (E1F ), the probability that we roll a 2 on our first die AND
we sum to 5, is only P (E1F ) = P ({(2, 3)}) = 1

36 , since the only way to satisfy both
conditions is if we roll (2, 3). Clearly, P (E1)(F ) ̸= P (E1F ), which shows that E1 and F
are not independent.

But what about if instead of summing to 5, we want to sum to 7? In this case, we can
achieve a sum of 7 (denoted by E2) by rolling any of the following possible combinations:
{(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}. Thus, P (E2) =

6
36 , and we now have:

P (E2)P (F ) =
6

36
· 1
6
=

1

36
.

Now, noting that P (E2F ) = P ({(2, 5)}) = 1
36 , we see that

P (E2)P (F ) = P (E2F ),

which tells us that events E2 and F are indeed independent.

So why is it that when we are trying to sum to 5, rolling a 2 on our first die is not an
independent event, but when we sum to 7, it is? If we don’t even think about probability
and just approach this from an intuitive perspective, we notice that rolling a 2 on our
first die affects our probability of summing to 5 because it means that we still have a
chance at doing so. For example, if we rolled 6 on our first die instead, then there would
be simply no way for us to sum to 5. Thus, because whether or not we can sum to 5
depends on the outcome of our first roll, E1 and F are not independent.

On the other hand, because we can sum to 7 regardless of what our first roll is, whether
it is a 2 or a 6, getting a 2 on our first roll on does not affect our probability of summing
to 7. Thus, in this case, E2 and F are independent.
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§5 Conditional Probability

We are then inclined to wonder about the probability of an event happening when we
have some information about the result of the experiment. Let there be events E and
F . Conditional probability describes the probability that E occurs given that F has
occurred. We use the notation P (E|F ) to denote ‘the probability that E occurs given
F ’. This probability is defined as follows:

Definition

If P (F ) > 0, then

P (E|F ) =
P (E ∩ F )

P (F )
(1)

This formula is derived as such: because we are given that F has occurred, the sample
space is reduced to that of F , as opposed to that of set S. Then, the only part left of
E that we may consider is E ∩ F ; any part of E not in E ∩ F is no longer part of the
sample space. Thus, we get the aforementioned formula.

We can rearrange this formula to get an expression for P (E∩F ) through multiplication.
Multiplying both sides by P (F ), we have that

Formula

P (E ∩ F ) = P (F )P (E|F ) (2)

This means that the probability of two events occurring is the probability that one
of the events occurs times the probability that the other occurs given the first one has
occurred.

One important property of this definition is that it can be generalized to be an
expression for the probability of the intersection of more than two events. It is known as
the multiplication rule. This rule is easily verified by applying the definition of conditional
probability (eq. 1).

Definition

P (E1∩E2∩E3∩...∩En) = P (E1)P (E2|E1)P (E3|E1∩E2)...P (En|E1∩E2∩...∩En−1)
(3)

On these bases, we are able to derive Bayes’s Formula.

§5.1 Bayes’s Formula

Bayes’s formula describes the probability of a event based on some prior knowledge about
the conditions in which it occurs.

Bayes’s formula comes from writing P (A ∩B) in two ways. We have from eq. 2 that
P (A ∩B) = P (B)P (A|B). However, as P (A ∩B) = P (B ∩A), we know that it can also
be written as P (A)P (B|A).
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As two equivalent expressions, we may set them equal to each other, obtaining

P (B)P (A|B) = P (A)P (B|A).

Dividing both sides by P (B), we have Bayes’s formula.

Formula

P (A|B) =
P (A)P (B|A)

P (B)
(4)

§6 Prosecutor’s Fallacy

We are all guilty of numerous crimes. Or, at least, that’s what prosecutor’s fallacy
suggests, which equates an extremely small probability of multiple factors occurring in
an innocent person to guilt in one who is tried.

This type of fallacy can occur in trials where a defendant’s identity is not entirely known.
Associative evidence, or evidence about ‘matches’ - through blood testing, DNA testing,
eyewitness accounts, and other factors - can potentially be accompanied by statistical
testimony about the ‘incidence rate’ of these matches, or, in other words, the rarity of
these factors occurring. Using this associative evidence on a general population, we can
find the probability that a randomly selected person may possess all the characteristics
the perpetrator has. If this probability is sufficiently low, and a defendant has all of the
traits, than that means that there is an incredibly high chance that they are guilty, right?
Well, not necessarily. Let’s look at a well-known example of this, the case of People vs.
Collins.

On June 18, 1964, Mrs. Juanita Brooks was walking home along an alley in Los
Angeles. She was carrying with her a basket of groceries and a purse. When something
from her basket fell, and she bent down to pick it up, she was pushed down to the ground
by a person whom she didn’t see approach. She fell to the ground; at that point, her
purse was already gone. On the ground, she managed to see a young woman fleeing the
scene. She would later recollect that this woman was about 145 pounds, was wearing
something dark, had hair “between a dark blond and a light blond”.

Another eyewitness noticed a white woman, five foot tall, of ordinary build, dark
blond hair in a ponytail, and in dark clothing, run out of an alley and enter a yellow
car, driven by a black male with a mustache and beard. With the basis of both eye-
witness accounts, the police arrested Malcom Collins, a Black man with a beard and
mustache, and Janet Collins, a white woman with a blond ponytail, who drove a yellow car.

At the trial, the prosecution brought in a mathematician to testify to the Collins’ guilt.
He sought to establish that, given that the robbery was committed by a couple of the
description established by the witnesses, there was an overwhelming probability that the
crime was committed by any couple that had these such distinctive traits.

He first established the product rule, which states that the probability of two mutually
independent events occurring is the product of their individual probabilities. Employing
this, the testimony followed the following logic:
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Imagine we picked a random couple from the population. We also assume that if we
pick a random couple from the population, we get the following estimated individual
probabilities that they match the following descriptions; these are the numbers the
mathematician used:

1. Partly yellow car: 1/10

2. Man with mustache: 1/4

3. Girl with ponytail: 1/10

4. Girl with blond hair: 1/3

5. Black man with beard: 1/10

6. Interracial couple in a car: 1/1000

Then, assuming independence, the mathematician attempted to find the probability
of all of the events occurring concurrently, in a single random couple. Recall that for
independent events, P (E ∩ F ) = P (E)P (F ). So, he simply multiplied all of the probabil-
ities together. After all this, he arrived at a probability that there was but one chance
in 12 million that any couple possessed the traits of the defendants; and therefore, that
there was but one chance in 12 million that the defendants were guilty. The prosecutor
then went on to say that, in his opinion, the statistics given were conservative estimates
and there were many other factors to account for, and so in reality, the probability of
innocence is ”something like one in a billion”. The jury found the couple guilty.

It seems like the math checks out. So what’s wrong here?

The first issue is the lack of foundation and inadequate proof of the statistical indepen-
dence of the factors presented. Recall that the product rule, which the mathematician in
this case used, only holds when the events be independent of each other. For dependent
events, we must use Bayes’ rule. And, the factors used here clearly are not independent!
For instance, having a mustache is positively correlated with having a beard – if someone
has a beard, they are much more likely to have a mustache than someone who doesn’t
have one.

In the case where the product rule is used with overlapping events, it unavoidably
results in a erroneous and exaggerated probability.

But still, that can’t account for too much. Maybe the chance will be higher than one
in twelve million, but it should still be pretty small. So what’s the real issue?

The largest problem here is that this probability answers the wrong question! The jury
is asked for their determination on whether the couple is guilty or not guilty; so, let’s
look for the probability that they are innocent. We are given that the couple matches
the description that the eyewitnesses gave; so, we are looking for

P (Innocent|Match the description).

Now, the math the mathematician had offered in court had not answered this question.
What it gave the probability for was the likelihood that a random, innocent couple would
match the description. In other words, it gave the probability,

P (Match the description|Innocent).
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This is a subtle, but incredibly significant, difference. Let’s examine the effect of the
swap. For this, we must employ Bayes’ formula.

First, let’s assume there were about 5 million couples in California in 1964. Let us also
assume that the mathematician was off by a factor of 12 – that one of every 1 million
couples matched the description.

We are looking for
P (Innocent|Match the description),

which, using Bayes’ theorem, is the same as

P (Innocent)P (Match the description|Innocent)
P (Match the Description)

.

To find these probabilities, let us make a table. There is only one guilty couple that
matches, and no guilty couples that don’t match.

Guilty Not Guilty

Match 1 4
Don’t Match 0 4,999,995

From this, P (Innocent) is 4,999,999
5,000,000 , P (Match the description | Innocent) is 4

4,999,999 ,

and P (Match the description) is 5
5,000,000 . We get that the probability that they are

innocent given a match is

4, 999, 999

5, 000, 000
· 4

4, 999, 999
· 5, 000, 000

5

=
4

5
.

That is far, far greater than 1 in 12 million! In fact, it seems that mathematically, the
Collins couple was more likely innocent than guilty, and by a fair amount, too. Of course,
the numbers used in this estimation are far from accurate, but it goes to show the scale
of how off the mathematician’s argument was.

As for how it ended for the Collinses... they were found, by the judge and jury, to be
guilty. However, in a later appeal, a court reexamined the course of the trial, and found
the tactic used by the prosecutor to be one that so distorted the jury that it constituted
a miscarriage of justice. The court found that, if the mathematician’s statistics were to
be used, there was over a 40% chance that there were at least two such couples in the
Los Angeles area alone.

In general, using these kinds of statistics in court can be more prejudicial than probative.
Such testimony and the manner in which it is used can distract the jury form their proper
duty of weighing the evidence on the issue of guilt and instead biases jurors into relying
upon logically unfounded, wrong, or irrelevant expert demonstration. This has bearing
on the possibility of effective defense and puts the defense counsel at a disadvantage, as
jurors must then be able to distinguish relevant evidence from inapplicable theory.
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§7 Random Variables

Often when we are conducting experiments, we are not as so much interested in the
outcome itself as some function of the outcome. For example, in flipping a coin, we
may only care about how many heads or tails occur overall rather than the individual
outcomes of each flip. In probability, these quantities of interest are known as random
variables.

Definition

A random variable is any real-valued function defined on the sample space of
an experiment.

Because the value of a random variable depends on the outcome of the experi-
ment, we can assign probabilities to the different possible values of the random vari-
able.

Example 7.1

Suppose that any given day has an equal probability of being sunny (s) or cloudy
(c). If we let X denote the number of sunny days in the next three days, then X
is a random variable that can take on any one of the values 0, 1, 2, and 3 with the
following probabilities:

P{X = 0} = P{(c, c, c)} =
1

2
· 1
2
· 1
2
=

1

8

P{X = 1} = P{(s, c, c), (c, s, c), (c, c, s)} = 3

(
1

2
· 1
2
· 1
2

)
=

3

8

P{X = 2} = P{(s, s, c), (c, s, s), (s, c, s)} = 3

(
1

2
· 1
2
· 1
2

)
=

3

8

P{X = 3} = P{(s, s, s)} =
1

2
· 1
2
· 1
2
=

1

8

Since X must take on one of the above values, we see that the total probabilities
should and do sum to 1.

When a random variable X can only take on at most a countable number of possible
values, such as in the example above, it is known as a discrete random variable. The
probablity mass function, p(a), of X is then defined as

p(a) = P{X = a},

where p(a) is only positive for a certain countable number of values for a. In other words,
if X can only assume one of the values x1, x2, x3, ..., then

p(xi) ≥ 0 for i = 1, 2, ...

p(x) = 0 for all other x

And because the total probabilities of all possible values for X must sum to 1, we have

∞∑
i=1

p(xi) = 1.
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§7.1 Expected Value

Using the probability mass function p(x) of a discrete random variable X, we can calculate
the expected value or expectation of X. Denoted by E[X], the expected value of X is
defined by:

Definition

E[X] =
∑

x:p(x)>0

xp(x)

Essentially, the expectation of X is a weighted average of all the possible values of X
where the weight of each value is the probability that X assumes it.

Problem 7.2. Find E[X], where X is the outcome when we roll a fair die.

Solution Since X can only take on one of the values 1, 2, 3, 4, 5, 6, it is a discrete
random variable. And because each value has an equal probability of occurring, we have
p(1) = p(2) = p(3) = p(4) = p(5) = p(6) = 1

6 . Thus,

E[X] = 1

(
1

6

)
+ 2

(
1

6

)
+ 3

(
1

6

)
+ 4

(
1

6

)
+ 5

(
1

6

)
+ 6

(
1

6

)
=

7

2
.

In other words, when we roll a die once, the expected value of its outcome is 3.5.

§7.2 Expectation of a Function of a Random Variable

But what if instead of finding the expectation of a random variable given its probability
mass function, we wish to find the expectation of some function of X, say f(x)? It turns
out that this follows relatively intuitively from the definition of expected value. Since
f(X) is equal to f(x) whenever X = x, the expected value of f(X) is just the weighted
average of all possible values of f(x), where each value is weighted by the probability
that X = x. Thus, we have the following proposition:

Proposition

Given that X is a discrete random variable that assumes one of the values
xi, i ≥ 1, with probabilities p(xi), then for any real-valued function f,

E[f(X)] =
∑
i

f(xi)p(xi).

§7.3 Variance

While expected value of E[X] gives us the weighted average of the possible values of
random variable X, it does not tell us anything about the spread of these values, another
important property of X. For this, we can use a quantity known as the variance. Because
X generally takes on values close to its mean E[X], we can measure the variance by
considering how far apart X is from E[X] on average. This suggests the use of E[|X−µ|]
as a way to define variance, but because absolute value can often be difficult to deal
with mathematically, we typically consider the expectation of the square of the difference
between X and µ instead.
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Definition

Given the random variable X with mean µ, the variance of X, denoted by
Var(X), is defined by:

Var(X) = E[(X − µ)2]

Alternatively, we can also use the definition of expected value to yield a second formula:

Var(X) = E[(X − µ)2]

=
∑
x

(x− µ)2p(x)

=
∑
x

(x2 − 2 + µ2)p(x)

=
∑
x

x2p(x)− 2µ
∑
x

xp(x) + µ2
∑
x

p(x)

= E[X2]− 2µ2 + µ2

= E[X2]− µ2

This gives us
Var(X) = E[X2]− (E[X])2,

another definition for variance that is often easier to use when actually computing Var(X).

It is also worthy to note that because Var(X) is the sum of nonnegative terms (as
both (x− µ)2 and p(x) = P (X = x) must be greater than or equal to 0), it follows that
Var(X) ≥ 0 as well. Thus we have Var(X) = E[X2]− (E[X])2 ≥ 0, or equivalently,

E[X2] ≥ (E[X])2.

In other words, the expected value of the square of a random variable is at least as large
as the square of its expected value.

Now that we’ve become more familiar with random variables, these characteristics of
expected value, the probability mass function, and variance will help us understand why
a phenomenon commonly known as the friendship paradox is actually quite misleading.

§8 The Friendship Paradox

The friendship paradox states that on average, your friends have more friends than you
do. While at first this might seem like an outlandish claim purposely trying to call you
out for your post-pandemic loneliness, there is some mathematical basis to it, though
we understand that having some logical backup still doesn’t justify the harsh wording
(ouch). Sorry. But let us explain.

Suppose there are n students at at your high school, with each person being labeled
person 1, 2, 3...n. Let f(i) be the number of friends person i has, and let t =

∑n
i=1 f(i),

the total number of one-way friendships at the school (for example, if person 1 and
person 2 were friends, this would count as 2 one-way friendships.) If we choose a random
individual X, who is equally likely to be any of the persons 1 through n, the expected
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number of friends of X can be represented by E[f(X)]. Letting f(i) = g(i) in proposition
7.2 above, we have:

E[f(X)] =

n∑
i=1

f(i)P{X = i} =

n∑
i=1

f(i) · 1
n
=

t

n
.

Now, if we let f2(i) = g(i) in proposition 7.2 above instead, the expected value of the
square of the number of friends of X can similarly be represented by:

E[f2(X)] =

n∑
i=1

f2(i)P{X = i} =

n∑
i=1

f2(i) · 1
n
=

n∑
i=1

f2(i)

n
.

If we divide these expected values, we see that:

E[f2(X)]

E[f(X)]
=

∑n
i=1 f

2(i)

t
.

Now, let’s say that we ask each of the n students at the school to write down the names
of all their friends, with one name per slip of paper. Since each person i has f(i) friends,
they will use f(i) slips of paper, and similarly, there will be f(i) slips of paper with
person i’s name on it (since each of their f(i) friends writes their name down). Thus,
there will be a total of t =

∑n
i=1 f(i) slips of paper with names on them. Now suppose

we choose a slip of paper at random. Let Y be the name written on the paper, and
E[f(Y )] be the expected number of friends of that chosen person. Because person i’s
name appears on f(i) out of the total f number of slips of paper, the probability that we

choose a slip of paper with person i’s name on it is f(i)
t . In other words,

P{Y = i} =
f(i)

t
, where i=1, 2, ... n.

Thus, the expected value of the number of friends of chosen person Y is:

E[f(Y )] =

n∑
i=1

f(i)P{Y = i} =

n∑
i=1

f(i) · f(i)
t

=
n∑

i=1

f2(i)

t
.

From our work with E[f(X)] and E[f2(X)] above, we see that

E[f(Y )] =
E[f2(X)]

E[f(X)]
≥ E[f(X)],

where we know the inequality holds true because the definition of variance tells us that
the expected value of the square of any random variable is always at least as large as the
square of its expectation (see section 7.3). Therefore, E[f(Y )] ≥ E[f(X)], which means
that the average number of friends that a randomly chosen friend has is greater than (or
equal to, if every person has the same number of friends) the average number of friends
of a randomly chosen individual.

This might seem a bit confusing at first, but if we think about the difference between
X and Y , the result makes more sense intuitively. Since X is just a randomly chosen
individual from the student population, every person has an equal probability of being
picked. On the other hand, Y is chosen by selecting a slip of paper with their name on
it, so the probability that person i is chosen is proportional to the number of slips that
contain their name. The more friends a person has, the higher the chance they will be
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Y, so Y is biased towards people with a larger number of friends. Naturally, then, the
expected number of friends of Y will be greater than (or equal to) the expected number
of friends of X, who is equally likely to be any of the n students at the school.

At its core, this phenomenon is a form of sampling bias, where people with more friends
are more likely to be your friend. Similarly, you are less likely to be friends with someone
who has very few friends, so on average, your friends tend to have more friends than you
do.

§9 Markov Chains

Let there be a sequence of random variables with a fixed set of possible outcomes, {0...M}.
This sequence is called a Markov chain if and only if each time a random variable is in a
state i, there is a fixed probability that it will then go onto state j. In short,

Definition

A Markov Chain is a model describing a series of events where the probability of
an event occurring is only based on the previous state.

What is often helpful is producing a matrix of every probability of going from state i
to state j. Let any such probability be represented by Xij ; then, the matrix of all such
probabilities will look like so:

X00 X01 X02 ... X0M

X10 X11 X12 ... X1M

X20 X21 X22 ... X2M

...
XM0 XM1 XM2 ... XMM


This matrix is called the transition matrix, and will remain constant for a Markov

Chain. Note that the probabilities in each line – the chance of going from a state i to
some state – must add up to one.

A Markov Chain may or may not converge as the number of trials done increases
to infinity (although often it comes extremely close to the predicted final distribution
long before infinity). If it does converge, it will converge to a matrix called the single
stationary distribution.

Definition

The single stationary distribution is a matrix, [P0, P1, P2, ...PM ], where Pi repre-
sents the probability that something will be in state i as the number of trials goes
to infinity.

One property of the single stationary distribution is that it, times the transition matrix,
results in itself.
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Property

[
P0 P1 P2 ... PM

]
·


X00 X01 X02 ... X0M

X10 X11 X12 ... X1M

X20 X21 X22 ... X2M

...
XM0 XM1 XM2 ... XMM

 =
[
P0 P1 P2 ... PM

]
(5)

§9.1 Gambler’s Ruin

We can use Markov Chains to model a famous problem called the Gambler’s Ruin problem.
Suppose A and B are compulsive gamblers, and decide to gamble with each other. A
starts off with a dollars, while B starts with N − a. Then, each game that they play, A
has p chance of winning, while B has a 1 − p = q chance of winning. In each of these
games, the loser gives the winner a dollar. What we wish to assert is that at some point
in the game, necessarily, one will end up with all the money, while the other will end up
with nothing.

To do this with Markov chains, we must first define the states. Let us useA0, A1, A2...AN

as states, where for Ai, i represents the amount of money A has.

The other thing we must do is form the transition matrix. First, we may define X00

and XNN as both 1, because when A reaches 0, they will remain at 0, and if A reaches
N , they will quit to keep their earnings.

Next, we note that A has a p chance of going from n to n+1 for n > 0 and a q chance
of going from n to n− 1 for n < N . A cannot go from n to any other state because they
can only win or lose $1 at a time and must lose something at each state. So, we fill the
rest in with zeroes. 

1 0 0 ... 0 0 0
q 0 p ... 0 0 0
0 q 0 ... 0 0 0

...
0 0 0 ... 0 p 0
0 0 0 ... q 0 p
0 0 0 ... 0 0 1


Now, let us determine the single stationary distribution, if there exists one. To do so,

we multiply an arbitrary [A0, A1, A2...AN ] and solve. We are given that, as a property of
the singe stationary distribution, that if it exists,

[
A0 A1 A2 ... AN

]
·



1 0 0 ... 0 0 0
q 0 p ... 0 0 0
0 q 0 ... 0 0 0

...
0 0 0 ... 0 p 0
0 0 0 ... q 0 p
0 0 0 ... 0 0 1


=
[
A0 A1 A2 ... AN

]
(6)
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Then, we have that A0 + qA1 = A0, so A1 = 0.
Next, we have qA2 = A1, and since A1 = 0, we have A2 = 0.
Following, we have pA1 + qA3 = A2, so A3 = 0.

In general, we will continue to have pAn−1 + qAn+ 1 = An, where An is shown to be
zero in the previous operation. In this manner, we find A1, A2...AN−1 to all be zero.

The final operation is pAN−1 +AN = AN , so AN is not necessarily zero. So, we get
that the stationary distribution is [A0, 0, 0, ..., 0, 0, AN ]. If the game goes on infinitely, A
will necessarily end up with either 0 or N dollars. Now, the question remains, what is
the probability of each?

Let Pi be the event that A wins given that they start with i and B starts with N − i.
We have that pPn−1 + qPn+1 = Pn for 1 ≤ n ≤ N − 1. Then as p+ q = 1 we can rewrite
as pPn−1 + qPn+1 = pPn + qPn, or

Pn+1 − Pn =
p

q
(Pn − Pn−1).

Using initial condition P0 = 0, we have P2 − P1 =
p
qP1.

Then, P3 − P2 =
p
q (P2 − P1) =

p
q (

p
qP1) =

p2

q2
P1.

We can continue the pattern, with a general recursive formula being

Pn − Pn−1 =
pn−1

qn−1
P1.

This continues up until PN − PN−1 = pN−1

qN−1P1. From here, we may add the equations
from 1 to i together to get

(Pi−Pi−1)+(Pi−1−Pi−2)+...+(P3−P2)+(P2−P1) = P1[

(
p

q

)i−1

+

(
p

q

)i−2

+...+

(
p

q

)2

+

(
p

q

)
].

Simplifying,

Pi − P1 = P1[

(
p

q

)i−1

+

(
p

q

)i−2

+ ...+

(
p

q

)2

+

(
p

q

)
].

Regrouping,

Pi = P1[

(
p

q

)i−1

+

(
p

q

)i−2

+ ...+

(
p

q

)2

+

(
p

q

)
+ 1]

Using condition PN = 1 we get that P1 =
1−(p/q)
1−(p/q)N

, so

Pi =
1− (p/q)i

1− (p/q)N
.

By symmetry of argument, Qi, the probability that B wins starting with N − i, is

1− (p/q)N−i

1− (p/q)N
.

We see that Pi +Qi = 1, so for any value A starts out with, we end up with either A
winning or B winning, and no other possible outcomes (the third outcome that could
have occurred, but doesn’t, is that the game continues forever without anyone winning).
The formulas found above can also be used to find the exact probabilities with which A
or B would win.
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